caor@mines-paristech.fr

Ce projet vise à établir un diagnostic des flux logistiques réels, associés à une zone urbaine définie. Ceci, En utilisant des algorithmes de Deep Learning pour la reconnaissance et classification d’image. Il s’inscrit dans un axe majeur de travail de la Chaire de Logistique Urbaine MINES ParisTech PSL : «l’aide à la décision pour les collectivités et les professionnels». Ce projet est notamment encadré par le mécénat de la Mairie de Paris et de l’ADEME.

L’établissement d’un vrai diagnostic des flux logistiques urbains permettrait :

  • une prévision des impacts des nouvelles règlementations (limitation des horaires d’accès, choix de piétonisation) ;
  • une orientation « adaptée au terrain » des projets de voierie;
  • un bilan réel des nuisances (émissions, bruit, congestion).

L’idée de base consiste à délimiter la zone urbaine en identifiant ses grands axes afin d’y effectuer un comptage automatique de véhicules pendant une certaine durée. Ensuite les informations de tous les points de comptage sont agrégées et un bilan statistique est réalisé. La vidéo ci-après montre le résultat de classification des algorithmes développés:

Téléchargez ici la fiche A4 du projet.

Comments are closed.