caor@mines-paristech.fr

Michel Valente a plaisir de vous inviter à sa soutenance de thèse le mercredi 18 décembre 2019 à 16h00.

La soutenance aura lieu dans le nouvel amphithéâtre L108 à Mines ParisTech, 60 bd Saint Michel 75006.

Elle sera défendue en anglais et s’intitule: « SLAM and Data Fusion for Autonomous Vehicles. From classical approaches to deep learning methods. »

Le jury sera composé comme suit:

  • – M. Ching-Yao Chan – UC Berkeley (Rapporteur)
  • – M. Vincent Fremont – École Centrale de Nantes (Rapporteur)
  • – M. David Filliat – ENSTA (Examinateur)
  • – Mme. Emilie Wirbel – Valeo (Examinatrice)
  • – M. Arnaud de La Fortelle – Mines ParisTech (Examinateur)
  • – M. Cyril Joly – Mines ParisTech (Examinateur)

Abstract:
Self-driving cars have the potential to provoke a mobility transformation that will impact our everyday lives. In order to reach this goal, the vehicles need to perform autonomously three main tasks: perception, planning and control. When it comes to urban environments, perception becomes a challenging task that needs to be reliable for the safety of the driver and the others. It is extremely important to have a good understanding of the environment and its obstacles, along with a precise localization, so that the other tasks are well performed. 
This thesis explores from classical approaches to Deep Learning techniques to perform mapping and localization for autonomous vehicles equipped with low cost sensors in urban environments. In the first part, we propose solutions to sensor fusion and localization using the Dempster-Shafer theory approach based on occupancy grid maps. Sequentially, we explore how the recent advances in Deep Learning techniques can be applied to the localization problem. We propose novel solutions that use directly the input from the sensors in neural networks to estimate the localization of the vehicle during its trajectory. Our solutions are tested and validated on different challenging urban scenarios showing the robustness and accuracy of the proposed approaches. 

Résumé:
L’arrivée des voitures autonomes va provoquer une transformation très importante de la mobilité urbaine telle que nous la connaissons, avec un impact significatif sur notre vie quotidienne. Pour atteindre cet objectif, les véhicules autonomes doivent effectuer en toute sécurité et de manière autonome trois tâches principales: la perception, la planification et le contrôle. La perception est une tâche particulièrement difficile en milieu urbain, car elle se doit d’être suffisamment précise pour assurer à la fois la sécurité du conducteur et celle des autres. Il est décisif d’avoir une bonne compréhension de l’environnement et de ses obstacles, ainsi qu’une localisation précise, afin que les autres tâches puissent être performantes.
L’objectif de cette thèse est d’explorer différentes techniques pour la cartographie et la localisation des voitures autonomes en milieu urbain, en partant des approches classiques jusqu’aux algorithmes d’apprentissage profond. Dans la première partie, nous proposons des solutions pour la fusion de capteurs et la localisation du véhicule en utilisant l’approche théorique de Dempster-Shafer basée sur des cartes de grille d’occupation. Ensuite, nous explorons comment les récents progrès des techniques d’apprentissage en profondeur peuvent s’appliquer au problème de localisation. Nous proposons de nouvelles solutions qui utilisent directement les entrées des capteurs dans les réseaux de neurones pour estimer la localisation du véhicule au cours de sa trajectoire. Nos solutions sont testées et validées sur différents scénarios urbains complexes montrant la robustesse et la précision des approches proposées.

Comments are closed.