caor@mines-paristech.fr
17
Juin

Soutenance de thèse — Arthur Gaudron

Arthur Gaudron a le plaisir de vous inviter à sa soutenance de thèse le mercredi 1 juillet à 14h00 (sous réserve d’acceptation des rapporteurs).

La soutenance aura lieu à MINES ParisTech (60 boulevard Saint-Michel, 75006) dans l’amphithéâtre L109, mais elle pourra aussi être suivie par visioconférence. Au regard de la situation sanitaire, il est difficile d’accueillir du public, ainsi nous vous prions de privilégier la visioconférence.

Pour recevoir directement le lien vers la visioconférence, nous vous invitons à ajouter votre adresse e-mail à la liste de diffusion de la Chaire Logistique Urbaine (vous pouvez vous désabonner à tout moment). De plus, vous serez informés des événements futurs de la Chaire.

La conférence sera accessible via zoom : https://mines-paristech.zoom.us/j/97653027814?pwd=Y2xmM1phbjJQSXRYZFVhVWVDVkg3Zz09

ID de réunion : 976 5302 7814

Mot de passe : 653938

La thèse, qui sera défendue en français, s’intitule « Méthodologie du modèle ouvert pour la conception d’un système d’aide la décision stratégique : le cas de la logistique urbaine ».

Le jury sera composé de :

  • — M. Jésus Gonzalez-Feliu — Professeur, Excelia Group La Rochelle Business School (Rapporteur)
  • — M. Olivier Péton — Professeur, IMT Atlantique (Rapporteur)
  • — M. Éric Ballot — Professeur, MINES ParisTech (Examinateur)
  • — Mme Laetitia Dablanc — Directrice de recherche, Université Gustave Eiffel (Examinatrice)
  • — Mme Milena Janjevic — Chargée de recherche, Massachusetts Institute of Technology (Examinatrice)
  • — Mme Hélène Wiedemann — Ingénieur, Renault (Examinatrice)
  • — M. Arnaud de La Fortelle — Professeur, MINES ParisTech (Directeur de thèse)

Résumé :
Le transport de marchandises, ou logistique urbaine, est un système complexe tant par la diversité de ses parties prenantes (ville, transporteurs, commerçants, etc.) que par l’intrication de leurs interactions. Chacun de ces acteurs a des objectifs qui lui sont propres mais dont les effets des décisions pour y parvenir se répercutent à un niveau global. Piloter cette activité représente donc un réel défi : non seulement modéliser précisément le système – passé ou présent – pose de réelles difficultés (en termes de complexité et des données nécessaires), mais cette modélisation ne permet que difficilement d’augurer des effets des décisions prises sur celui-ci. Son pilotage demande la capacité de projeter et se représenter les effets de décisions, non-encore observées, sur celui-ci. Pour que les décisions de la logistique urbaine soient pertinentes, elles doivent s’appuyer sur des modèles qui devront intégrer une vision plus fine de l’activité, au niveau microscopique, c’est-à-dire des opérations, vers un niveau macroscopique qui primait jusque-là. Pour cela, nous proposons donc de nous appuyer sur des outils de simulation mathématique qui ont pour objectif de simuler les effets macroscopiques de différentes décisions (p. ex. interdiction de certaines motorisations), en prenant en compte les interactions microscopiques de la logistique comme la prévisible modification d’une organisation logistique et l’impact sur les indicateurs associés (p. ex. le niveau de pollution d’une rue ou le coût de la livraison).

C’est pourquoi nous proposons la « méthodologie du modèle ouvert » dont l’objectif est de concevoir et valider un modèle qui pourra être utilisé par les acteurs de la logistique urbaine lors de leur prise de décision stratégique. Au cœur de cette méthodologie se tient la question de l’intégration du savoir expert dans un modèle de simulation. Une telle question agite la communauté scientifique au moins depuis la création de l’IA comme discipline : d’abord avec les systèmes experts, dont l’échec est lié à l’impossibilité de mécaniser le savoir expert ; à présent avec les avancées extrêmement prometteuses de l’apprentissage automatique, qui entre autres tentent d’apprendre par des données les raisonnements des experts, mais dont les modèles se heurtent à des problèmes de disponibilité de la donnée, de validation et d’explicabilité. Nous pensons que cette méthodologie permet de réconcilier la science des données et les sciences de gestion de manière à ce que dans des environnements complexes, la décision puisse être assistée par des simulations qui permettent de plus précisément maîtriser cette complexité. De plus, en supposant une certaine disponibilité de la donnée, et la volonté de la mise en place d’un pilotage data-driven (donc plus automatisé), ce modèle pourrait servir comme une première base de validation de modèles plus complexes d’apprentissage automatique.

26
Mar

Mingei

Dates de réalisation : du 01/12/2018 au 30/11/2021

Type de projet: Européen, H2020

Financeur: Commission Européenne (Grant agreement No 822336)

Chercheur associé: Sotiris Manitsaris

Résumé du projet:

Mingei is a Horizon 2020 project that aims to digitize and transfer knowledge about the (in)tangible aspects of crafts. This covers the representation, preservation, and accessibility of craft as cultural heritage. Crafts include tangible artefacts, materials, and tools, as well as intangible dimensions, such as dexterity, skill, and the relationship between master and apprentice. These dimensions involve traditional and culturally identifying elements of the communities of practice, innovation, and artistic creation. At the same time, they are part of the history and economy of the areas and societies in which they flourish.

Mingei will explore the possibilities of representing and making accessible both tangible and intangible aspects of craft as cultural heritage (CH). Heritage Crafts (HCs) involve craft artefacts, materials, and tools and encompass craftsmanship as a form of Intangible Cultural Heritage. Intangible HC dimensions include dexterity, know-how, and skilled use of tools, as well as, tradition, and identity of the communities in which they are, or were, practiced. HCs are part of the history and have impact upon the economy of the areas in which they flourish. The significance and urgency to the preservation of HCs is underscored, as several are threatened with extinction.
Despite their cultural significance efforts for HC representation and preservation are scattered geographically and thematically. Mingei will provide means to establish HC representations based on digital assets, semantics, existing literature and repositories, as well as, mature digitisation and representation technologies. These representations will capture and preserve tangible and intangible dimensions of HCs.
Central to craftsmanship is skill and its transmission from master to apprentice. Mingei will capture the motion and tool usage of HC practitioners, from Living Human Treasures and archive documentaries, in order to preserve and illustrate skill and tool manipulation.
The represented knowledge will be availed through compelling experiential presentations, using storytelling and educational applications and based on AR and MR and the Internet.
Engaging cultural experiences have positive impact on interest growth and tourism, which support HC communities and institutions and foster HC sustainability and preservation.
The consortium brings together complementary expertise and content. Pilot themes exhibit richness in tangible and intangible dimensions and are directly related to European history.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 822336.

Want to learn more about Mingei? Visit our website http://www.mingei-project.eu/ and follow us on Facebook, Instagram, Twitter and LinkedIn.
Subscribe to the monthly Mingei newsletter to stay up to date.

6
Mar

Marion Pilté reçoit le Thales PhD Award

Marion Pilté, doctorante Cifre du centre de robotique entre 2015 et 2018, en partenariat avec l’entreprise Thales, et encadrée par Silvère Bonnabel, a reçu le Thales PhD Award 2019 des mains de Bernhard Quendt, directeur technique de Thales. Ce prix récompense deux lauréats sur environ 70 thèses Cifre soutenues au sein de l’entreprise.

22
Nov

Soutenance de thèse — Michel Valente

Michel Valente a plaisir de vous inviter à sa soutenance de thèse le mercredi 18 décembre 2019 à 16h00.

La soutenance aura lieu dans le nouvel amphithéâtre L118 à Mines ParisTech, 60 bd Saint Michel 75006.

Elle sera défendue en anglais et s’intitule: « SLAM and Data Fusion for Autonomous Vehicles. From classical approaches to deep learning methods. »

Le jury sera composé comme suit:

  • – M. Ching-Yao Chan – UC Berkeley (Rapporteur)
  • – M. Vincent Fremont – École Centrale de Nantes (Rapporteur)
  • – M. David Filliat – ENSTA (Examinateur)
  • – Mme. Emilie Wirbel – Valeo (Examinatrice)
  • – M. Arnaud de La Fortelle – Mines ParisTech (Examinateur)
  • – M. Cyril Joly – Mines ParisTech (Examinateur)

Abstract:
Self-driving cars have the potential to provoke a mobility transformation that will impact our everyday lives. In order to reach this goal, the vehicles need to perform autonomously three main tasks: perception, planning and control. When it comes to urban environments, perception becomes a challenging task that needs to be reliable for the safety of the driver and the others. It is extremely important to have a good understanding of the environment and its obstacles, along with a precise localization, so that the other tasks are well performed. 
This thesis explores from classical approaches to Deep Learning techniques to perform mapping and localization for autonomous vehicles equipped with low cost sensors in urban environments. In the first part, we propose solutions to sensor fusion and localization using the Dempster-Shafer theory approach based on occupancy grid maps. Sequentially, we explore how the recent advances in Deep Learning techniques can be applied to the localization problem. We propose novel solutions that use directly the input from the sensors in neural networks to estimate the localization of the vehicle during its trajectory. Our solutions are tested and validated on different challenging urban scenarios showing the robustness and accuracy of the proposed approaches. 

Résumé:
L’arrivée des voitures autonomes va provoquer une transformation très importante de la mobilité urbaine telle que nous la connaissons, avec un impact significatif sur notre vie quotidienne. Pour atteindre cet objectif, les véhicules autonomes doivent effectuer en toute sécurité et de manière autonome trois tâches principales: la perception, la planification et le contrôle. La perception est une tâche particulièrement difficile en milieu urbain, car elle se doit d’être suffisamment précise pour assurer à la fois la sécurité du conducteur et celle des autres. Il est décisif d’avoir une bonne compréhension de l’environnement et de ses obstacles, ainsi qu’une localisation précise, afin que les autres tâches puissent être performantes.
L’objectif de cette thèse est d’explorer différentes techniques pour la cartographie et la localisation des voitures autonomes en milieu urbain, en partant des approches classiques jusqu’aux algorithmes d’apprentissage profond. Dans la première partie, nous proposons des solutions pour la fusion de capteurs et la localisation du véhicule en utilisant l’approche théorique de Dempster-Shafer basée sur des cartes de grille d’occupation. Ensuite, nous explorons comment les récents progrès des techniques d’apprentissage en profondeur peuvent s’appliquer au problème de localisation. Nous proposons de nouvelles solutions qui utilisent directement les entrées des capteurs dans les réseaux de neurones pour estimer la localisation du véhicule au cours de sa trajectoire. Nos solutions sont testées et validées sur différents scénarios urbains complexes montrant la robustesse et la précision des approches proposées.

31
Oct

Soutenance de thèse — Hugues Thomas

Hugues Thomas a le plaisir de vous inviter à sa soutenance de thèse le mardi 19 novembre 2019 à 9h30.
Elle a été réalisée au Centre de Robotique de Mines ParisTech, en partenariat avec Terra3D. Sous la direction de François Goulette (CAOR) et Beatriz Marcotegui (CMM), elle a été encadrée par Jean-Emmanuel Deschaud (CAOR) et Yann Le Gall (Terra3D). Elle sera défendue en français et s’intitule: « Apprentissage de nouvelles représentations pour la sémantisation de nuages de points 3D » ou « Learning new representations for 3D point cloud semantic segmentation » en anglais.

La soutenance aura lieu dans le nouvel amphithéâtre Schlumberger à l’École des Mines ParisTech, 60 bd Saint Michel 75006.

Jury

  •  – Paul CHECCHIN – Université Clermont Auvergne (Rapporteur) 
  • – Bruno Vallet – IGN Institut national de l’information géographique et forestière (Rapporteur) 
  • – Martin Weinmann – KIT Karlsruhe Institute of Technology (Examinateur) 
  • – Beatriz Marcotegui – CMM Mines ParisTech (Examinateur) 
  • – Pascal Monasse, Professeur à l’Ecole Nationale des Ponts et Chaussées, examinateur
  • – Jean-Emmanuel Deschaud – CAOR Mines ParisTech (Examinateur) 
  • – François Goulette – CAOR Mines ParisTech (Examinateur) 
  • – Yann Le Gall – Terra3D (Invité)
30
Oct

Stage Ingénieur ou Master 2 — Conception par Machine-Learning d’une IA vérifiant la saisonnalité de bouquets par reconnaissance des variétés de fleurs

Le stage consistera à concevoir et développer une IA capable d’identifier, sur les photos de bouquets transmises par les fleuristes, les variétés de fleurs le constituant, et d’alerter automatiquement si une fleur d’un bouquet semble hors-saison (en localisant clairement sur la photo la fleur « suspecte » avec sa variété reconnue). Il s’agit donc d’abord d’entraîner par Deep- Learning un module de détection et catégorisation reconnaissance des fleurs du bouquet. Il est envisagé d’utiliser un Réseau Convolutif profond de type « Mask_RCNN », « Faster_RCNN » ou similaire, qui sera entraîné notamment sur les bases d’images existantes des fleurs produites par les horticulteurs agréés par Fleurs-d’Ici, ainsi que sur des bases publiques telles que http://www.robots.ox.ac.uk/~vgg/data/flowers/102/. Pour chaque variété de fleur reconnue, l’IA devra afficher en surimpression sur la photo de bouquet les variétés fleurs reconnues (avec leur localisation sur la photo), et mettre en évidence les éventuelles fleurs qui paraissent « hors saison » compte tenu des informations de saisonnalité (déjà associées par Fleurs-d’Ici à chaque type de fleur).

12
Sep

Premier prix au « CARLA Autonomous Driving challenge » 2019 (catégorie « vision-only »)

Marin Toromanoff (doctorant CIFRE Valeo encadré par Fabien Moutarde) a obtenu le PREMIER PRIX au « CARLA Autonomous Driving challenge » 2019 (catégorie « vision-only »).
Cette distinction récompense son approche d’Apprentissage Profond par Renforcement (Deep Reinforcement Learning) pour la conduite autonome fondée sur la vision, qui a obtenu les meilleures performances pour la « track 2 » (vision seule) dans cette compétition internationale. Ce benchmark évalue dans l’environnement de simulation CARLA la capacité d’algorithmes de conduite automatisée à effectuer des trajets quelconques dans une ville inconnue, en respectant les feux tricolores et en évitant les collisions avec autres véhicules et piétons.

Vidéo des résultats de approche d’Apprentissage Profond par Renforcement de Marin Toromanoff

30
Août

Publications de 2019 IEEE Intelligent Vehicles Symposium (IV) disponibles

Les publications du Symposium IV19 à Paris en juin 2019 organisé par le Centre de Robotique MINES ParisTech, VEDECOM et l’IFSTTAR sont maintenant disponibles sur IEEE Explore.

IV2019IV2019-organizers

6
Mai

Soutenance de thèse – Xavier Roynard

Xavier Roynard a le plaisir de vous inviter à ma soutenance de thèse le lundi 3 juin 2019 à 14h30.

Lieu : Mines ParisTech, 60 boulevard Saint Michel 75006 Paris
Salle : amphi L109

Réalisée au Centre de Robotique de Mines ParisTech sous la direction de François Goulette et encadrée par Jean-Emmanuel Deschaud, elle sera soutenue en français et s’intitule: « Sémantisation à la Volée de Nuages de Points 3D acquis par Systèmes Embarqués » (« On-the-Fly Semantization of 3D Point Clouds Acquired by Embedded Systems » en anglais).

Le jury sera composé comme suit :

  • – Paul CHECCHIN – Université Clermont Auvergne (Rapporteur)
  • – Bruno Vallet – IGN Institut national de l’information géographique et forestière (Rapporteur)
  • – Martin Weinmann – KIT Karlsruhe Institute of Technology (Examinateur)
  • – Beatriz Marcotegui – CMM Mines ParisTech (Examinateur)
  • – Jean-Emmanuel Deschaud – CAOR Mines ParisTech (Examinateur)
  • – François Goulette – CAOR Mines ParisTech (Examinateur)

Résumé :
Cette thèse se trouve à la confluence de deux mondes en pleine explosion : la voiture autonome et l’intelligence artificielle (particulièrement l’apprentissage profond). Le premier tirant profit du deuxième, les véhicules autonomes utilisent de plus en plus de méthodes d’apprentissage profond pour analyser les données produites par ses différents capteurs (dont les LiDARs) et pour prendre des décisions. Alors que les méthodes d’apprentissage profond ont révolutionné l’analyse des images (en classification et segmentation par exemple), elles ne produisent pas des résultats aussi spectaculaires sur les nuages de points 3D. en particulier parce que les jeux de scènes données de nuages de points 3D annotés sont rares et de qualité moyenne. On présente donc dans cette thèse un nouveau jeu de données réalisé par acquisition mobile pour produire suffisamment de données et annoté à la main pour assurer une bonne qualité de segmentation. De plus ces jeux de !
données sont par nature déséquilibrés en nombre d’échantillon par classe et contiennent beaucoup d’échantillons redondants, on propose donc une méthode d’échantillonnage adaptée à ces jeux de données. Un autre problème rencontré quand quand on essaye de classifier un point à partie de son voisinage sous forme de grille voxelique est le compromis entre un pas de discrétisation fin (pour avoir décrire précisément la surface voisine du point) et une grille de taille élevée (pour aller chercher du contexte un peu plus loin). On propose donc également des méthodes de réseaux tirant profit de voisinages multi-échelles. Ces méthodes atteignent l’état de l’art des méthodes de classification par points sur des benchmark publique. Enfin pour respecter les contraintes imposées par les systèmes embarqués (traitement en temps réel et peu de puissance de calcul), on présente une méthode qui permet de n’appliquer les couches convolutionnelles que là où i!
l y a de l’information à traiter.

Abstract:
This thesis is at the confluence of two worlds in rapid growth: autonomous cars and artificial intelligence (especially deep learning). As the first takes advantage of the second, autonomous vehicles are increasingly using deep learning methods to analyze the data produced by its various sensors (including LiDARs) and to make decisions. While deep learning methods have revolutionized image analysis (in classification and segmentation for example), they do not produce such spectacular results on 3D point clouds. This is particularly true because the datasets of annotated 3D point clouds are rare and of moderate quality. This thesis therefore presents a new dataset developed by mobile acquisition to produce enough data and annotated by hand to ensure a good quality of segmentation. In addition, these datasets are inherently unbalanced in number of samples per class and contain many redundant samples, so a sampling method adapted to these datasets is proposed. Another problem e!
ncountered when trying to classify a point from its neighbourhood as a voxel grid is the compromise between a fine discretization step (for accurately describing the surface adjacent to the point) and a large grid (to look for context a little further away). We therefore also propose network methods that take advantage of multi-scale neighbourhoods. These methods achieve the state of the art of point classification methods on public benchmarks. Finally, to respect the constraints imposed by embedded systems (real-time processing and low computing power), we present a method that allows convolutional layers to be applied only where there is information to be processed.

9
Avr

Quantitative Models of Human Behavior: Econometrics, Machine Learning, or Both?

Le Centre de Robotique a le plaisir d’accueillir Prof. Joan Walker (Université de Californie, Berkeley) durant une année. Joan Walker fera une présentation sur ses travaux portant sur la modélisation quantitative des comportements humains. La présentation aura lieu le mercredi 17 avril de 11h00 à 12h00 dans la salle Chevalier à MINES ParisTech.

Abstract

Many aspects of engineering, planning, and policy involve a human element, be it consumers, businesses, governments, or other organizations. Effective design and management require understanding this human response. This talk focuses on behavioral theories and the use of quantitative methods to analyze human response, comparing and contrasting more traditional approaches grounded in economics with more recent efforts from machine learning.

Bio

joan_walkerJoan Walker is a Professor of Civil Environmental Engineering at UC Berkeley. She has served twice as Acting Director of UC Berkeley’s Institute of Transportation Studies and as Co-Director of its Center for Global Metropolitan Studies. She received her Bachelor’s degree in Civil Engineering from UC Berkeley and her Master’s and PhD degrees in Civil and Environmental Engineering from MIT. Prior to joining UC Berkeley, she was Director of Demand Modeling at Caliper Corporation and an Assistant Professor of Geography and Environment at Boston University. She is a recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE) – the highest honor bestowed by the U.S. government on scientists and engineers beginning their independent careers. She is the Chair of the Committee on Transportation Demand Forecasting (ADB40) for the Transportation Research Board of the National Academies.
www.JoanWalker.com